
Secured Data Exchange Mechanism used in
Military Networks Using Minimal Keys in Sensor

Networks
Thandava Sumanth Mr B.Madhusudhana Rao
II nd year M.Tech, Asst. Professor,
Dept of CSE, Dept of CSE,

Avanthi Institute of Engineering and Technology, Avanthi Institute of Engineering and Technology,
Vizianagaram. Vizianagaram.

Abstract: Sensor nodes in military environments such as a
battlefield or a hostile region are likely to suffer from
intermittent network connectivity and frequent partitions.
Disruption-tolerant network (DTN) technologies are
becoming successful solutions that allow wireless devices
carried by soldiers to communicate with each other and
access the confidential information or command reliably by
exploiting external storage nodes. Some of the most
challenging issues in this scenario are the enforcement of
authorization policies and the policies update for secure data
retrieval. Ciphertext -policy attribute-based encryption (CP-
ABE) is a promising cryptographic solution to the access
control issues. However, the problem of applying CP-ABE in
decentralized DTNs introduces several security and privacy
challenges with regard to the attribute revocation, key
escrow, and coordination of attributes issued from different
authorities. In this paper, we propose a secure data retrieval
scheme using CP-ABE for decentralized DTNs where
minimum number of multiple key authorities manage their
attributes independently by using mutual authentication
protocol, data exchange protocol and symmetric key block
encryption algorithm. We demonstrate how to apply the
proposed mechanism to securely and efficiently manage the
confidential data distributed in the disruption-tolerant
military network

Keywords: encryption,decryption,encoding,decoding.

INTRODUCTION
In this paper we tried to implement security in a

Network using cipher text-ABE and Key policy-ABE.
This project is embedded with various Server applications
and used to encrypt and decrypt the information that is
being sent and informing about the server when an
intrusion is detected.

Decentralized CP-ABE schemes in the multi-
authority network environment. They achieved a
combined access policy over the attributes issued from
different authorities by simply encrypting data multiple
times. The main disadvantages of this approach are
efficiency and expressiveness of access policy. For
example, when a commander encrypts a secret mission
under the policy (“Battalion 1” AND (“Region 2” OR
‘Region 3”)), it cannot be expressed when each “Region”
attribute is managed by different authorities, since simply
multi encrypting approaches can by no means express any
general “ -out-of- ” logic.

Data confidentiality:
Unauthorized users who do not have enough

credentials satisfying the access policy should be deterred
from accessing the plain data in the storage node. In addition,
unauthorized access from the storage node or key authorities
should be also prevented.
Collusion-resistance:

If multiple users collude, they may be able to
decrypt a ciphertext by combining their attributes even if
each of the users cannot decrypt the ciphertext alone, even if
each of them cannot decrypt it individually. We do not want
these colluders to be able to decrypt the secret information by
combining their attributes. We also consider collusion attack
among curious local authorities to derive users’ keys.
Backward and forward Secrecy:

In the context of ABE, backward secrecy means that
any user who comes to hold an attribute (that satisfies the
access policy) should be prevented from accessing the
plaintext of the previous data exchanged before he holds the
attribute .On the other hand, forward secrecy means that any
user who drops an attribute should be prevented from
accessing the plaintext of the subsequent data exchanged
after he drops the attribute, unless the other valid attributes
that he is holding satisfy the access policy.

● The concept of attribute-based encryption (ABE) is
a promising approach that fulfills the requirements
for secure data retrieval in DTNs.

● ABE features a mechanism that enables an access
control over encrypted data using access policies
and a scribed attributes among private keys and
ciphertexts.

● ciphertext-policy ABE (CP-ABE) provides a
scalable way of encrypting data such that the
encryptor defines the attribute set that the decryptor
needs to possess in order to de- crypt the ciphertext .

● In CP-ABE, the key authority generates private keys
of users by applying the authority’s master secret
keys to users’ associated set of attributes.

ABE comes in two flavors called key-policy ABE (KP-ABE)
and ciphertext-policy ABE (CP-ABE). In KP-ABE, the
encryptor only gets to label a ciphertext with a set of
attributes.

Thandava Sumanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 94-99

www.ijcsit.com 94

Attribute Revocation:
A user who newly holds the attribute might be able to
access the previous data encrypted before obtains the
attribute until the data is re-encrypted with the newly
updated attribute keys by periodic rekeying.
Key Escrow:
Most of the existing ABE schemes are constructed on the
architecture where a single trusted authority has the
power to generate the whole private keys of users with its
master secret information
Decentralized ABE:
Achieved a combined access policy over the attributes
issued from different authorities by simply encrypting
data multiple times. The main disadvantages of this
approach are efficiency and expressiveness of access
policy.
Encryption and Decryption of data:
 In cryptography, Encryption is the process of
encoding messages or information in such a way that only
authorized parties can read it. In an encryption scheme,
the message or information, referred to as plain-text, is
encrypted using an encryption algorithm [11], turning it
into an unreadable cipher text [6].
Decryption: It is the process of decoding the data which
has been encrypted into a secret format. An authorized
user can only decrypt data because decryption requires a
secret key or password. In simple terms it is the
conversion of cipher text into plain text [6].

Figure 1: Conversion of plain text to cipher text and vice

versa

Compression and Encoding algorithms are of major
interest of the research since long. The following
algorithms are a few of them are briefed below:
Triple DES

Triple DES (3DES) is the common name for the
Triple Data Encryption Algorithm (TDEA) block cipher,
which applies the Data Encryption Standard (DES) cipher
algorithm three times to each data block. Because of the
availability of increasing computational power, the key
size of the original DES cipher was becoming subject to
brute force attacks; Triple DES was designed to provide a
relatively simple method of increasing the key size of
DES to protect against such attacks, without designing a
completely new block cipher algorithm. This suffers
from time complexity and long ciphers to be transmitted.
AES

The Advanced Encryption Standard (AES) is a
symmetric-key encryption standard adopted by the U.S.
government. The standard comprises three block ciphers,
AES-128, AES-192 and AES-256, adopted from a larger
collection originally published as Rijndael. Each of these

ciphers has a 128-bit block size, with key sizes of 128, 192
and 256 bits, respectively. This also suffers from time
complexity and long ciphers to be transmitted.
RC4
RC4 (also known as ARC4 or ARCFOUR meaning
Alleged RC4, see below) is the most widely-used software
stream cipher and is used in popular protocols such as
Secure Sockets Layer (SSL) (to protect Internet traffic)
and WEP (to secure wireless networks). This is less
computationally intensive compared to asynchronous
algorithms. Thus, an attempt to construct a simple, faster,
and less heavy cipher encoder algorithm is being made in
this project.

METHODOLOGY
Let n denote the number of sensors in our network. Without
loss of generality, we assume that n is an odd positive
integer. Each sensor in the network has a unique identifier in
the range 0: n - 1. We use ix and iy to denote the identifiers
of sensors x and y, respectively, in this network.
 Each two sensors, say sensors x and y, share a
symmetric key denoted Kx;y or Ky;x. Only the two sensors x
and y know their shared key Kx;y. And if sensors x and y
ever become neighbours in the network, then they can use
their shared symmetric key Kx;y to perform two functions:
1) Mutual Authentication: Sensor x authenticates sensor y,
and sensor y authenticates sensor x.
2) Confidential Data Exchange: Encrypt and later decrypt
all the exchanged data messages between x and y. (Note that
sensors x and y can become neighbours in the network in two
occasions. First, the two sensors x and y could be mobile and
their movements cause them to become adjacent to one
another. Second, the two sensors could be stationary and they
are deployed adjacent to one another.)
 In the remainder of this section, we show that if the
shared symmetric keys are designed to have a “special
structure”, then each sensor needs to store only (n+1)/2
shared symmetric keys. But before we present the special
structure of the shared keys, we need to introduce two new
concepts: “universal keys” and “a circular relation, named
below, over the sensor identifiers”.
 Each sensor x in the network stores a symmetric key,
called the universal key of sensor x. The universal key of
sensor x, denoted ux, is known only to sensor x.
Let ix and iy be two distinct sensor identifiers. (Recall that
both ix and iy are in the range 0: n-1, where n is the odd
number of sensors in the sensor network.) Identifier ix is said
to be below identifier iy if exactly one of the following two
conditions holds:
1) ix<iy and (iy - ix) < n=2
2) ix>iy and (ix - iy) > n=2
The below relation is better explained by an example.
Consider the case where n = 5. In this case, the sensor
identifiers are 0, 1, 2, 3, and 4, and we have:

Identifier 0 is below identifiers 1 and 2.
Identifier 1 is below identifiers 2 and 3.
Identifier 2 is below identifiers 3 and 4.
Identifier 3 is below identifiers 4 and 0.
Identifier 4 is below identifiers 0 and 1

Thandava Sumanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 94-99

www.ijcsit.com 95

A MUTUAL AUTHENTICATION PROTOCOL:
 Before the sensors are deployed in a network, each
sensor x is supplied with the following items:
1) One distinct identifier ix in the range 0: n-1
2) One universal key ux
3) (n-1)/2 symmetric keys Kx;y = H(ix,uy) each of which
is shared between sensor x and another sensor y, where ix
is below iy After every sensor is supplied with these
items, the sensors are deployed in random locations in the
network.
 Now if two sensors x and y happen to become
adjacent to one another, then these two sensors need to
execute a mutual authentication protocol so that sensor x
proves to sensor y that it is indeed sensor x and sensor y
proves to sensor x that it is indeed sensor y.

The mutual authentication protocol consists of
the following six steps.
Step 1: Sensor x selects a random nonce nx and sends a
hello message that is received by sensor y.

x y : hello(ix, nx)
Step 2: Sensor y selects a random nonce ny and sends a
hello message that is received by sensor x.

x y : hello(iy, ny)
Step 3: Sensor x determines whether ix is below iy. Then
it either fetches Kx;y from its memory or computes it.
Finally, sensor x sends a verify message to sensor y.

x y : verify(ix, iy, H(ix iynyKx;y))
Step 4: Sensor y determines whether iy is below ix. Then
it either fetches Kx;y from its memory or computes it.
Finally, sensor y sends a verify message to sensor x.

x y : verify(iy, ix, H(iy ix nxKx;y))
Step 5: Sensor x computes H(iy ix nx*Kx;y) and
compares it with the received H(iy ix nx*Kx;y). If they
are equal, then x concludes that the sensor claiming to be
sensor y is indeed sensor y. Otherwise, no conclusion can
be reached.
Step 6: Sensor y computes H(ix, iy,ny,Kx;y) and
compares it with the received H(ix, iy,ny,Kx;y). If they
are equal, then y concludes that the sensor claiming to be
sensor x is indeed sensor x. Otherwise, no conclusion can
be reached.
A DATA EXCHANGE PROTOCOL:

After two adjacent sensors x and y have
authenticated one another using the mutual authentication
protocol described in the previous section, sensors x and
y can now start exchanging data messages according to
the following data exchange protocol. (Recall that nx and
ny are the two nonce’s that were selected at random by
sensors x and y, respectively, in the mutual authentication
protocol.)
Step 1: Sensor x concatenates the nonce ny with the text
of the data message to be sent, encrypts the concatenation
using the symmetric key Kx;y, and sends the result in a
data message to sensor y.

x y : data(ix, iy, Kx,y (ny text))
Step 2: Sensor y concatenates the nonce nx with the text
of the data message to be sent, encrypts the concatenation
using the symmetric key Kx;y, and sends the result in a
data message to sensor x.

x y : data(iy, ix, Kx,y (nx text))

 Sensors x and y can repeat Steps 1 and 2 any number of
times to exchange data between themselves.
Symmetric key block encryption algorithm:
Algorithm:
High-level description of the algorithm

● KeyExpansion—round keys are derived from the
cipher key using Rijndael's key schedule

● Initial Round
1. AddRoundKey—each byte of the state is combined

with the round key using bitwise xor
● Rounds
1. SubBytes—a non-linear substitution step where

each byte is replaced with another according to a
lookup table.

2. ShiftRows—a transposition step where each row of
the state is shifted cyclically a certain number of
steps.

3. MixColumns—a mixing operation which operates
on the columns of the state, combining the four
bytes in each column

4. AddRoundKey
● Final Round (no MixColumns)
1. SubBytes
2. ShiftRows
3. AddRoundKey

The SubBytes step
In the SubBytes step, each byte in the state is replaced with
its ntry in a fixed 8-bit lookup table, S; bij = S(aij).In the
SubBytes step, each byte in the array is updated using an 8-
bit substitution box, the Rijndael S-box. This operation
provides the non-linearity in the cipher. The S-box used is
derived from the multiplicative inverse over GF(28), known
to have good non-linearity properties. To avoid attacks based
on simple algebraic properties, the S-box is constructed by
combining the inverse function with an invertible affine
transformation. The S-box is also chosen to avoid any fixed
points (and so is a derangement), and also any opposite fixed
points.

The Shift Rows step
In the ShiftRows step, bytes in each row of the state are
shifted cyclically to the left. The number of places each byte
is shifted differs for each row.
The Shift Rows step operates on the rows of the state; it
cyclically shifts the bytes in each row by a certain offset. For
AES, the first row is left unchanged. Each byte of the second
row is shifted one to the left. Similarly, the third and fourth
rows are shifted by offsets of two and three respectively. For
the block of size 128 bits and 192 bits the shifting pattern is
the same. In this way, each column of the output state of the

Thandava Sumanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 94-99

www.ijcsit.com 96

Shift Rows step is composed of bytes from each column
of the input state. (Rijndael variants with a larger block
size have slightly different offsets). In the case of the 256-
bit block, the first row is unchanged and the shifting for
second, third and fourth row is 1 byte, 3 bytes and 4 bytes
respectively - this change only applies for the Rijndael
cipher when used with a 256-bit block, as AES does not
use 256-bit blocks.
In the Mix Columns step, the four bytes of each column
of the state are combined using an invertible linear
transformation. The Mix Columns function takes four
bytes as input and outputs four bytes, where each input
byte affects all four output bytes. Together with Shift
Rows, Mix Columns provides diffusion in the cipher.
During this operation, each column is multiplied by the
known matrix that for the 128 bit key is

The multiplication operation is defined as: multiplication
by 1 means leaving unchanged, multiplication by 2 means
shifting byte to the left and multiplication by 3 means
shifting to the left and then performing xor with the initial
un-shifted value.
In more general sense, each column is treated as a
polynomial over GF(28) and is then multiplied modulo
x4+1 with a fixed polynomial c(x) = 0x03 · x3 + x2 + x +
0x02. The coefficients are displayed in their hexadecimal
equivalent of the binary representation of bit polynomials
from GF(2)[x]. The Mix Columns step can also be
viewed as a multiplication by a particular MDS matrix in
a finite field. This process is described further in the
article Rijndael mix columns.

The Add Round Key step
In the Add Round Key step, the sub key is combined with
the state. For each round, a sub key is derived from the
main key using Rijndael's key schedule each sub key is
the same size as the state. The sub key is added by
combining each byte of the state with the corresponding
byte of the sub key using bitwise XOR.

Optimization of the cipher
On systems with 32-bit or larger words, it is

possible to speed up execution of this cipher by combining
SubBytes and Shift Rows with Mix Columns, and
transforming them into a sequence of table lookups. This
requires four 256-entry 32-bit tables, which utilizes a total of
four kilobytes (4096 bytes) of memory—one kilobyte for
each table. A round can now be done with 16 table lookups
and 12 32-bit exclusive-or operations, followed by four 32-
bit exclusive-or operations in the Add Round Key step
If the resulting four kilobyte table size is too large for a given
target platform, the table lookup operation can be performed
with a single 256-entry 32-bit (i.e. 1 kilobyte) table by the
use of circular rotates.
Using a byte-oriented approach, it is possible to combine the
Sub Bytes, Shift Rows, and Mix Columns steps into a single
round operation.

Key Authorities:
They are key generation centers that generate public/secret
parameters for CP-ABE. The key authorities consist of a
central authority and multiple local authorities. We assume
that there are secure and reliable communication channels
between a central authority and each local authority during
the initial key setup and generation phase. Each local
authority manages different attributes and issues
corresponding attribute keys to users. They grant differential
access rights to individual users based on the users’
attributes. The key authorities are assumed to be honest-but-
curious. That is, they will honestly execute the assigned tasks
in the system; however they would like to learn information
of encrypted contents as much as possible.
Storage node:
This is an entity that stores data from senders and provide
corresponding access to users. It may be mobile or static.
Similar to the previous schemes, we also assume the storage
node to be semi-trusted that is honest-but-curious.
Sender:
This is an entity who owns confidential messages or data
(e.g., a commander) and wishes to store them into the
external data storage node for ease of sharing or for reliable
delivery to users in the extreme networking environments. A
sender is responsible for defining (attribute based) access
policy and enforcing it on its own data by encrypting the data
under the policy before storing it to the storage node.

Thandava Sumanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 94-99

www.ijcsit.com 97

User:
This is a mobile node who wants to access the data stored
at the storage node (e.g., a soldier). If a user possesses a
set of attributes satisfying the access policy of the
encrypted data defined by the sender, and is not revoked
in any of the attributes, then he will be able to decrypt the
ciphertext and obtain the data

4. DATA ANALYSIS

Screen1:Remote Desktop connecting to various

servers

Thandava Sumanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 94-99

www.ijcsit.com 98

5.CONCLUSION

DTN technologies are becoming successful solutions in
military applications that allow wireless devices to
communicate with each other and access the confidential
information reliably by exploiting external storage nodes.
CP-ABE is a scalable cryptographic solution to the access
control and secure data retrieval issues. In this paper, we
proposed an efficient and secure data retrieval method
using CP-ABE for decentralized DTNs where multiple
key authorities manage their attributes independently. The
inherent key escrow problem is resolved such that the
confidentiality of the stored data is guaranteed even under
the hostile environment where key authorities might be
compromised or not fully trusted. In addition, the fine-
grained key revocation can be done for each attribute
group. We demonstrate how to apply the proposed
mechanism to securely and efficiently manage the
confidential data distributed in the dis- ruption-tolerant
military network.

REFERENCES
1. J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, “Maxprop:

Routing for vehicle-based disruption tolerant networks,” in Proc.
IEEE INFOCOM, 2006, pp. 1–11.

2. M. Chuah and P. Yang, “Node density-based adaptive routing
scheme for disruption tolerant networks,” in Proc. IEEE
MILCOM, 2006, pp. 1–6

3. M. M. B. Tariq, M. Ammar, and E. Zequra, “Mesage ferry route
design for sparse ad hoc networks with mobile nodes,” in Proc.
ACM MobiHoc, 2006, pp. 37–48.

4. S. Roy andM. Chuah, “Secure data retrieval based on ciphertext
policy attribute-based encryption (CP-ABE) system for the
DTNs,” Lehigh CSE Tech. Rep., 2009.

5. M. Chuah and P. Yang, “Performance evaluation of content-based
information retrieval schemes for DTNs,” in Proc. IEEE
MILCOM, 2007, pp. 1–7.

6. M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu,
“Plutus: Scalable secure file sharing on untrusted storage,” in Proc
Conf. File Storage Technol., 2003, pp. 29–42.

7. L. Ibraimi, M. Petkovic, S. Nikova, P. Hartel, and W. Jonker,
“Mediated ciphertext-policy attribute-based encryption and its
application,” in Proc. WISA, 2009, LNCS 5932, pp. 309–323.

8. N. Chen, M. Gerla, D. Huang, and X. Hong, “Secure, selective group
broadcast in vehicular networks using dynamic attribute based
encryption,” in Proc. Ad Hoc Netw. Workshop, 2010, pp. 1–8.

9. D. Huang and M. Verma, “ASPE: Attribute-based secure policy
enforcement in vehicular ad hoc networks,” Ad Hoc Netw., vol. 7, no.
8, pp. 1526–1535, 2009.

10. A. Lewko and B. Waters, “Decentralizing attribute-based encryption,”
Cryptology ePrint Archive: Rep. 2010/351, 2010.

11. A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Proc.
Eurocrypt, 2005, pp. 457–473.

12. V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,” in Proc.
ACM Conf. Comput. Commun. Security, 2006, pp. 89–98.

13. J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attributebased encryption,” in Proc. IEEE Symp. Security Privacy,
2007, pp. 321–334.

14. R. Ostrovsky, A. Sahai, and B. Waters, “Attribute-based encryption
with non-monotonic access structures,” in Proc. ACM Conf. Comput.
Commun. Security, 2007, pp. 195–203.

15. S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute based data sharing
with attribute revocation,” in Proc. ASIACCS, 2010, pp. 261–270.

16. A. Boldyreva, V. Goyal, and V. Kumar, “Identity-based encryption
with efficient revocation,” in Proc. ACM Conf. Comput. Commun.
Security, 2008, pp. 417–426.

17. M. Pirretti, P. Traynor, P. McDaniel, and B. Waters, “Secure attribute
based systems,” in Proc. ACMConf. Comput. Commun. Security, 2006,
pp. 99–112.

18. S. Rafaeli and D. Hutchison, “A survey of key management for secure
group communication,” Comput. Surv., vol. 35, no. 3, pp. 309–329,
2003.

19. S. Mittra, “Iolus: A framework for scalable secure multicasting,” in
Proc. ACM SIGCOMM, 1997, pp. 277–288.

20. P. Golle, J. Staddon, M. Gagne, and P. Rasmussen, “A content-driven
access control system,” in Proc. Symp. Identity Trust Internet, 2008,
pp. 26–35.

21. L. Cheung and C. Newport, “Provably secure ciphertext policy ABE,”
in Proc. ACM Conf. Comput. Commun. Security, 2007, pp. 456–465.

22. V.Goyal, A. Jain,O. Pandey, andA. Sahai, “Bounded ciphertext policy
attribute-based encryption,” in Proc. ICALP, 2008, pp. 579–591.

23. X. Liang, Z. Cao, H. Lin, and D. Xing, “Provably secure and efficient
bounded ciphertext policy attribute based encryption,” in Proc.
ASIACCS, 2009, pp. 343–352.

24. M. Chase and S. S. M. Chow, “Improving privacy and security in
multi-authority attribute-based encryption,” in Proc. ACM Conf.
Comput. Commun. Security, 2009, pp. 121–130.

25. M. Chase, “Multi-authority attribute based encryption,” in Proc. TCC,
2007, LNCS 4329, pp. 515–534.

26. S. S.M. Chow, “Removing escrow from identity-based encryption,” in
Proc. PKC, 2009, LNCS 5443, pp. 256–276.

27. M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya, “P-
signatures and noninteractive anonymous credentials,” in Proc. TCC,
2008, LNCS 4948, pp. 356–374.

28. M.Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss,A.Hysyanskaya,
and H. Shacham, “Randomizable proofs and delegatable anonymous
credentials,” in Proc. Crypto, LNCS 5677, pp. 108–125.

29. D. Naor, M. Naor, and J. Lotspiech, “Revocation and tracing schemes
for stateless receivers,” in Proc. CRYPTO, 2001, LNCS 2139, pp. 41–
62.

30. C. K.Wong,M. Gouda, and S. S. Lam, “Secure group communications
using key graphs,” in Proc. ACM SIGCOMM, 1998, pp. 68–79.

31. A. T. Sherman and D. A. McGrew, “Key establishment in large
dynamic groups using one-way function trees,” IEEE Trans. Softw.
Eng., vol. 29, no. 5, pp. 444–458, May 2003.

32. K. C. Almeroth and M. H. Ammar, “Multicast group behavior in the
Internet’s multicast backbone (MBone),” IEEE Commun. Mag., vol.
35, no. 6, pp. 124–129, Jun. 1997.

33. “The Pairing-Based Cryptography Library,” Accessed Aug. 2010
[Online]. Available: http://crypto.stanford.edu/pbc/

Thandava Sumanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 94-99

www.ijcsit.com 99

