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Abstract: Sensor nodes in military environments such as a 
battlefield or a hostile region are likely to suffer from 
intermittent network connectivity and frequent partitions. 
Disruption-tolerant network (DTN) technologies are 
becoming successful solutions that allow wireless devices 
carried by soldiers to communicate with each other and 
access the confidential information or command reliably by 
exploiting external storage nodes. Some of the most 
challenging issues in this scenario are the enforcement of 
authorization policies and the policies update for secure data 
retrieval. Ciphertext -policy attribute-based encryption (CP-
ABE) is a promising cryptographic solution to the access 
control issues. However, the problem of applying CP-ABE in 
decentralized DTNs introduces several security and privacy 
challenges with regard to the attribute revocation, key 
escrow, and coordination of attributes issued from different 
authorities. In this paper, we propose a secure data retrieval 
scheme using CP-ABE for decentralized DTNs where 
minimum number of multiple key authorities manage their 
attributes independently by using mutual authentication 
protocol, data exchange protocol and symmetric key block 
encryption algorithm. We demonstrate how to apply the 
proposed mechanism to securely and efficiently manage the 
confidential data distributed in the disruption-tolerant 
military network 
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INTRODUCTION 
In this paper we tried to implement security in a 

Network using cipher text-ABE and Key policy-ABE. 
This project is embedded with various Server applications 
and used to encrypt and decrypt the information that is 
being sent and informing about the server when an 
intrusion is detected. 

Decentralized CP-ABE schemes in the multi-
authority network environment. They achieved a 
combined access policy over the attributes issued from 
different authorities by simply encrypting data multiple 
times. The main disadvantages of this approach are 
efficiency and expressiveness of access policy. For 
example, when a commander encrypts a secret mission 
under the policy (“Battalion 1” AND (“Region 2” OR 
‘Region 3”)), it cannot be expressed when each “Region” 
attribute is managed by different authorities, since simply 
multi encrypting approaches can by no means express any 
general “ -out-of- ” logic. 

Data confidentiality: 
Unauthorized users who do not have enough 

credentials satisfying the access policy should be deterred 
from accessing the plain data in the storage node. In addition, 
unauthorized access from the storage node or key authorities 
should be also prevented. 
Collusion-resistance: 

If multiple users collude, they may be able to 
decrypt a ciphertext by combining their attributes even if 
each of the users cannot decrypt the ciphertext alone, even if 
each of them cannot decrypt it individually. We do not want 
these colluders to be able to decrypt the secret information by 
combining their attributes. We also consider collusion attack 
among curious local authorities to derive users’ keys. 
Backward and forward Secrecy: 

In the context of ABE, backward secrecy means that 
any user who comes to hold an attribute (that satisfies the 
access policy) should be prevented from accessing the 
plaintext of the previous data exchanged before he holds the 
attribute .On the other hand, forward secrecy means that any 
user who drops an attribute should be prevented from 
accessing the plaintext of the subsequent data exchanged 
after he drops the attribute, unless the other valid attributes 
that he is holding satisfy the access policy. 

● The concept of attribute-based encryption (ABE) is
a promising approach that fulfills the requirements
for secure data retrieval in DTNs.

● ABE features a mechanism that enables an access
control over encrypted data using access policies
and a scribed attributes among private keys and
ciphertexts.

● ciphertext-policy ABE (CP-ABE) provides a
scalable way of encrypting data such that the
encryptor defines the attribute set that the decryptor
needs to possess in order to de- crypt the ciphertext .

● In CP-ABE, the key authority generates private keys
of users by applying the authority’s master secret
keys to users’ associated set of attributes.

ABE comes in two flavors called key-policy ABE (KP-ABE) 
and ciphertext-policy ABE (CP-ABE). In KP-ABE, the 
encryptor only gets to label a ciphertext with a set of 
attributes. 
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Attribute Revocation: 
A user who newly holds the attribute might be able to 
access the previous data encrypted before obtains the 
attribute until the data is re-encrypted with the newly 
updated attribute keys by periodic rekeying. 
Key Escrow:  
Most of the existing ABE schemes are constructed on the 
architecture where a single trusted authority has the 
power to generate the whole private keys of users with its 
master secret information 
Decentralized ABE: 
Achieved a combined access policy over the attributes 
issued from different authorities by simply encrypting 
data multiple times. The main disadvantages of this 
approach are efficiency and expressiveness of access 
policy. 
Encryption and Decryption of data: 
 In cryptography, Encryption is the process of 
encoding messages or information in such a way that only 
authorized parties can read it. In an encryption scheme, 
the message or information, referred to as plain-text, is 
encrypted using an encryption algorithm [11], turning it 
into an unreadable cipher text [6].   
Decryption: It is the process of decoding the data which 
has been encrypted into a secret format. An authorized 
user can only decrypt data because decryption requires a 
secret key or password. In simple terms it is the 
conversion of cipher text into plain text [6]. 
 

 
Figure 1: Conversion of plain text to cipher text and vice 

versa 
 
Compression and Encoding algorithms are of major 
interest of the research since long. The following 
algorithms are a few of them are briefed below:  
Triple DES  

Triple DES (3DES) is the common name for the 
Triple Data Encryption Algorithm (TDEA) block cipher, 
which applies the Data Encryption Standard (DES) cipher 
algorithm three times to each data block. Because of the 
availability of increasing computational power, the key 
size of the original DES cipher was becoming subject to 
brute force attacks; Triple DES was designed to provide a 
relatively simple method of increasing the key size of 
DES to protect against such attacks, without designing a 
completely new block cipher algorithm. This suffers 
from time complexity and long ciphers to be transmitted.  
AES  

The Advanced Encryption Standard (AES) is a 
symmetric-key encryption standard adopted by the U.S. 
government. The standard comprises three block ciphers, 
AES-128, AES-192 and AES-256, adopted from a larger 
collection originally published as Rijndael. Each of these 

ciphers has a 128-bit block size, with key sizes of 128, 192 
and 256 bits, respectively. This also suffers from time 
complexity and long ciphers to be transmitted.  
RC4  
RC4 (also known as ARC4 or ARCFOUR meaning 
Alleged RC4, see below) is the most widely-used software 
stream cipher and is used in popular protocols such as 
Secure Sockets Layer (SSL) (to protect Internet traffic) 
and WEP (to secure wireless networks). This is less 
computationally intensive compared to asynchronous 
algorithms. Thus, an attempt to construct a simple, faster, 
and less heavy cipher encoder algorithm is being made in 
this project. 
 

METHODOLOGY 
Let n denote the number of sensors in our network. Without 
loss of generality, we assume that n is an odd positive 
integer. Each sensor in the network has a unique identifier in 
the range 0: n - 1. We use ix and iy to denote the identifiers 
of sensors x and y, respectively, in this network. 
        Each two sensors, say sensors x and y, share a 
symmetric key denoted Kx;y or Ky;x. Only the two sensors x 
and y know their shared key Kx;y. And if sensors x and y 
ever become neighbours in the network, then they can use 
their shared symmetric key Kx;y to perform two functions: 
1) Mutual Authentication: Sensor x authenticates sensor y, 
and sensor y authenticates sensor x. 
2) Confidential Data Exchange: Encrypt and later decrypt 
all the exchanged data messages between x and y. (Note that 
sensors x and y can become neighbours in the network in two 
occasions. First, the two sensors x and y could be mobile and 
their movements cause them to become adjacent to one 
another. Second, the two sensors could be stationary and they 
are deployed adjacent to one another.) 
        In the remainder of this section, we show that if the 
shared symmetric keys are designed to have a “special 
structure”, then each sensor needs to store only (n+1)/2 
shared symmetric keys. But before we present the special 
structure of the shared keys, we need to introduce two new 
concepts: “universal keys” and “a circular relation, named 
below, over the sensor identifiers”. 
        Each sensor x in the network stores a symmetric key, 
called the universal key of sensor x. The universal key of 
sensor x, denoted ux, is known only to sensor x. 
Let ix and iy be two distinct sensor identifiers. (Recall that 
both ix and iy are in the range 0: n-1, where n is the odd 
number of sensors in the sensor network.) Identifier ix is said 
to be below identifier iy if exactly one of the following two 
conditions holds: 
1) ix<iy and (iy - ix) < n=2 
2) ix>iy and (ix - iy) > n=2 
The below relation is better explained by an example. 
Consider the case where n = 5. In this case, the sensor 
identifiers are 0, 1, 2, 3, and 4, and we have: 
 
Identifier 0 is below identifiers 1 and 2. 
Identifier 1 is below identifiers 2 and 3. 
Identifier 2 is below identifiers 3 and 4. 
Identifier 3 is below identifiers 4 and 0. 
Identifier 4 is below identifiers 0 and 1 
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A MUTUAL AUTHENTICATION PROTOCOL: 
       Before the sensors are deployed in a network, each 
sensor x is supplied with the following items: 
1) One distinct identifier ix in the range 0: n-1 
2) One universal key ux 
3) (n-1)/2 symmetric keys Kx;y = H(ix,uy) each of which 
is shared between sensor x and another sensor y, where ix 
is below iy After every sensor is supplied with these 
items, the sensors are deployed in random locations in the 
network. 
       Now if two sensors x and y happen to become 
adjacent to one another, then these two sensors need to 
execute a mutual authentication protocol so that sensor x 
proves to sensor y that it is indeed sensor x and sensor y 
proves to sensor x that it is indeed sensor y. 

The mutual authentication protocol consists of 
the following six steps. 
Step 1: Sensor x selects a random nonce nx and sends a 
hello message that is received by sensor y.  

x    y : hello(ix, nx) 
Step 2: Sensor y selects a random nonce ny and sends a 
hello message that is received by sensor x.  

x      y : hello(iy, ny) 
Step 3: Sensor x determines whether ix is below iy. Then 
it either fetches Kx;y from its memory or computes it. 
Finally, sensor x sends a verify message to sensor y.  

x    y : verify(ix, iy, H(ix iynyKx;y)) 
Step 4: Sensor y determines whether iy is below ix. Then 
it either fetches Kx;y from its memory or computes it. 
Finally, sensor y sends a verify message to sensor x.  

x    y : verify(iy, ix, H(iy ix nxKx;y)) 
Step 5: Sensor x computes H(iy ix nx*Kx;y) and 
compares it with the received H(iy ix nx*Kx;y). If they 
are equal, then x concludes that the sensor claiming to be 
sensor y is indeed sensor y. Otherwise, no conclusion can 
be reached. 
Step 6: Sensor y computes H(ix, iy,ny,Kx;y) and 
compares it with the received H(ix, iy,ny,Kx;y). If they 
are equal, then y concludes that the sensor claiming to be 
sensor x is indeed sensor x. Otherwise, no conclusion can 
be reached. 
A DATA EXCHANGE PROTOCOL: 

After two adjacent sensors x and y have 
authenticated one another using the mutual authentication 
protocol described in the previous section, sensors x and 
y can now start exchanging data messages according to 
the following data exchange protocol. (Recall that nx and 
ny are the two nonce’s that were selected at random by 
sensors x and y, respectively, in the mutual authentication 
protocol.) 
Step 1: Sensor x concatenates the nonce ny with the text 
of the data message to be sent, encrypts the concatenation 
using the symmetric key Kx;y, and sends the result in a 
data message to sensor y. 

x    y : data(ix, iy, Kx,y (ny text)) 
Step 2: Sensor y concatenates the nonce nx with the text 
of the data message to be sent, encrypts the concatenation 
using the symmetric key Kx;y, and sends the result in a 
data message to sensor x.  

x     y : data(iy, ix, Kx,y (nx text)) 

    Sensors x and y can repeat Steps 1 and 2 any number of 
times to exchange data between themselves. 
Symmetric key block encryption algorithm: 
Algorithm: 
High-level description of the algorithm 

● KeyExpansion—round keys are derived from the 
cipher key using Rijndael's key schedule 

● Initial Round 
1. AddRoundKey—each byte of the state is combined 

with the round key using bitwise xor 
● Rounds 
1. SubBytes—a non-linear substitution step where 

each byte is replaced with another according to a 
lookup table. 

2. ShiftRows—a transposition step where each row of 
the state is shifted cyclically a certain number of 
steps. 

3. MixColumns—a mixing operation which operates 
on the columns of the state, combining the four 
bytes in each column 

4. AddRoundKey 
● Final Round (no MixColumns) 
1. SubBytes 
2. ShiftRows 
3. AddRoundKey 

The  SubBytes step 
In the SubBytes step, each byte in the state is replaced with 
its ntry in a fixed 8-bit lookup table, S; bij = S(aij).In the 
SubBytes step, each byte in the array is updated using an 8-
bit substitution box, the Rijndael S-box. This operation 
provides the non-linearity in the cipher. The S-box used is 
derived from the multiplicative inverse over GF(28), known 
to have good non-linearity properties. To avoid attacks based 
on simple algebraic properties, the S-box is constructed by 
combining the inverse function with an invertible affine 
transformation. The S-box is also chosen to avoid any fixed 
points (and so is a derangement), and also any opposite fixed 
points. 

 
The Shift Rows step 
In the ShiftRows step, bytes in each row of the state are 
shifted cyclically to the left. The number of places each byte 
is shifted differs for each row. 
The Shift Rows step operates on the rows of the state; it 
cyclically shifts the bytes in each row by a certain offset. For 
AES, the first row is left unchanged. Each byte of the second 
row is shifted one to the left. Similarly, the third and fourth 
rows are shifted by offsets of two and three respectively. For 
the block of size 128 bits and 192 bits the shifting pattern is 
the same. In this way, each column of the output state of the 
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Shift Rows step is composed of bytes from each column 
of the input state. (Rijndael variants with a larger block 
size have slightly different offsets). In the case of the 256-
bit block, the first row is unchanged and the shifting for 
second, third and fourth row is 1 byte, 3 bytes and 4 bytes 
respectively - this change only applies for the Rijndael 
cipher when used with a 256-bit block, as AES does not 
use 256-bit blocks. 
In the Mix Columns step, the four bytes of each column 
of the state are combined using an invertible linear 
transformation. The Mix Columns function takes four 
bytes as input and outputs four bytes, where each input 
byte affects all four output bytes. Together with Shift 
Rows, Mix Columns provides diffusion in the cipher. 
During this operation, each column is multiplied by the 
known matrix that for the 128 bit key is 

 
The multiplication operation is defined as: multiplication 
by 1 means leaving unchanged, multiplication by 2 means 
shifting byte to the left and multiplication by 3 means 
shifting to the left and then performing xor with the initial 
un-shifted value. 
In more general sense, each column is treated as a 
polynomial over GF(28) and is then multiplied modulo 
x4+1 with a fixed polynomial c(x) = 0x03 · x3 + x2 + x + 
0x02. The coefficients are displayed in their hexadecimal 
equivalent of the binary representation of bit polynomials 
from GF(2)[x]. The Mix Columns step can also be 
viewed as a multiplication by a particular MDS matrix in 
a finite field. This process is described further in the 
article Rijndael mix columns. 

 
The  Add Round Key step 
In the Add Round Key step, the sub key is combined with 
the state. For each round, a sub key is derived from the 
main key using Rijndael's key schedule each sub key is 
the same size as the state. The sub key is added by 
combining each byte of the state with the corresponding 
byte of the sub key using bitwise XOR. 
 

Optimization of the cipher  
On systems with 32-bit or larger words, it is 

possible to speed up execution of this cipher by combining 
SubBytes and Shift Rows with Mix Columns, and 
transforming them into a sequence of table lookups. This 
requires four 256-entry 32-bit tables, which utilizes a total of 
four kilobytes (4096 bytes) of memory—one kilobyte for 
each table. A round can now be done with 16 table lookups 
and 12 32-bit exclusive-or operations, followed by four 32-
bit exclusive-or operations in the Add Round Key step 
If the resulting four kilobyte table size is too large for a given 
target platform, the table lookup operation can be performed 
with a single 256-entry 32-bit (i.e. 1 kilobyte) table by the 
use of circular rotates. 
Using a byte-oriented approach, it is possible to combine the 
Sub Bytes, Shift Rows, and Mix Columns steps into a single 
round operation. 

 
 
Key Authorities: 
They are key generation centers that generate public/secret 
parameters for CP-ABE. The key authorities consist of a 
central authority and multiple local authorities. We assume 
that there are secure and reliable communication channels 
between a central authority and each local authority during 
the initial key setup and generation phase. Each local 
authority manages different attributes and issues 
corresponding attribute keys to users. They grant differential 
access rights to individual users based on the users’ 
attributes. The key authorities are assumed to be honest-but-
curious. That is, they will honestly execute the assigned tasks 
in the system; however they would like to learn information 
of encrypted contents as much as possible. 
Storage node: 
This is an entity that stores data from senders and provide 
corresponding access to users. It may be mobile or static. 
Similar to the previous schemes, we also assume the storage 
node to be semi-trusted that is honest-but-curious. 
Sender: 
This is an entity who owns confidential messages or data 
(e.g., a commander) and wishes to store them into the 
external data storage node for ease of sharing or for reliable 
delivery to users in the extreme networking environments. A 
sender is responsible for defining (attribute based) access 
policy and enforcing it on its own data by encrypting the data 
under the policy before storing it to the storage node. 
 

Thandava Sumanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 94-99

www.ijcsit.com 97



User: 
This is a mobile node who wants to access the data stored 
at the storage node (e.g., a soldier). If a user possesses a 
set of attributes satisfying the access policy of the 
encrypted data defined by the sender, and is not revoked 
in any of the attributes, then he will be able to decrypt the 
ciphertext and obtain the data 
 

4. DATA ANALYSIS 

 
Screen1:Remote Desktop connecting to various 

servers 
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5.CONCLUSION

DTN technologies are becoming successful solutions in 
military applications that allow wireless devices to 
communicate with each other and access the confidential 
information reliably by exploiting external storage nodes. 
CP-ABE is a scalable cryptographic solution to the access 
control and secure data retrieval issues. In this paper, we 
proposed an efficient and secure data retrieval method 
using CP-ABE for decentralized DTNs where multiple 
key authorities manage their attributes independently. The 
inherent key escrow problem is resolved such that the 
confidentiality of the stored data is guaranteed even under 
the hostile environment where key authorities might be 
compromised or not fully trusted. In addition, the fine-
grained key revocation can be done for each attribute 
group. We demonstrate how to apply the proposed 
mechanism to securely and efficiently manage the 
confidential data distributed in the dis- ruption-tolerant 
military network. 
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